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Vitamin D deficiency accelerates ageing and age-related
diseases: a novel hypothesis
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Abstract Ageing can occur at different rates, but what controls this variable rate is unknown.
Here I have developed a hypothesis that vitamin D may act to control the rate of ageing. The
basis of this hypothesis emerged from studyng the various cellular processes that control ageing.
These processes such as autophagy, mitochondrial dysfunction, inflammation, oxidative stress,
epigenetic changes, DNA disorders and alterations in Ca2+ and reactive oxygen species (ROS)
signalling are all known to be regulated by vitamin D. The activity of these processes will be
enhanced in individuals that are deficient in vitamin D. Not only will this increase the rate of ageing,
but it will also increase the probability of developing age-related diseases such as Alzheimer’s
disease, Parkinson’s disease, multiple sclerosis and cardiovascular disease. In individual with
normal vitamin D levels, these ageing-related processes will occur at lower rates resulting in a
reduced rate of ageing and enhanced protection against these age-related diseases.
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Abstract figure legend The cellular processes that drive the rate of ageing are regulated by Vitamin D.

Introduction

One of the interesting aspects of ageing is that it can
occur at different rates (Grabowska et al. 2017). As part
of the hypothesis developed here, it is proposed that those
individuals that age slowly live a lot longer and have a
healthy old age in that they tend not to develop age-related
diseases. On the other hand, those that age faster do not
survive so long and are likley to develop the age-related
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diseases such as Alzheimer’s disease, Parkinson’s disease
and cardiovascular disease. Perhaps the best example of
how the rate of ageing can vary is the increased ageing
that occurs in Hutchinson–Gilford progeria syndrome
(HGPS). This premature ageing disorder, which is caused
by a mutation in the LMNA gene, greatly accelerates the
rate of ageing such that young children become old during
their teenage years and do not survive much beyond
20 years (Burtner & Kennedy, 2010; Gonzalo et al. 2017).
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It is of interest that vitamin D supplementation can slow
the increased rate of ageing that occurs during HGPS
(Kreienkamp et al. 2016).

In order to understand how ageing can occur at different
rates, it is necessary to understand what controls the ageing
process. There is increasing evidence that ageing is not a
single process in that it seems to be driven by a number
of cellular processes such as autophagy, mitochondrial
dysfunction, inflammation, oxidative stress, epigenetic
changes, DNA disorders, and alterations in Ca2+ and
reactive oxygen species (ROS) signalling (Ding & Shen,
2008; López-Otı́n et al. 2013; Aunan et al. 2016; Seals et al.
2016; Jylhävä et al. 2017). What is remarkable about all
of these cellular ageing processes is that their activity is
regulated by vitamin D (Fig. 1). This protective function
of vitamin D in ageing is markedly enhanced by its ability
to control the expression of Nrf2 (Nakai et al. 2014) and the
anti-ageing protein Klotho (Forster et al. 2011), which are
also important regulators of multiple cellular signalling
systems including the formation of antioxidants. Nrf2
plays a major role in protecting cells against oxidative
stress (Lewis et al. 2010). Defects in the Klotho gene
induces the premature-ageing syndrome in mice (Kuro-o,
2009).

On the basis of this information, I shall develop a
hypothesis that this vitamin D–Klotho–Nrf2 signalling
network is a key regulator of the rate of ageing. When
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Figure 1. The vitamin D hypothesis of ageing
It is proposed that vitamin D acts to regulate ageing by controlling
the activity of a number of the ageing processes. Vitamin D
promotes the activity of autophagy, which acts to slow down the
ageing processes by removing dysfunctional mitochondria.
Vitamin D also acts to reduce mitochondrial dysfunction, oxidative
stress, inflammation, calcium signalling, epigenetics and DNA
disorders including telomere shortening, which act to drive the
processes of ageing.

vitamin D levels are normal, these processes will operate to
drive healthy ageing that occurs at a slow rate (Tuohimaa,
2009; Haussler et al. 2010). However, when vitamin D is
deficient these ageing processes will be enhanced and this
will result in an increase in the rate of ageing. An example
of how the rate of ageing can vary is the observation
that the onset of menopause in women, who have lower
levels of vitamin D than men (Looker et al. 2011),
is enhanced by vitamin D deficiency (Purdue-Smithe
et al. 2017), i.e., menopause occurs earlier in those
women that are deficient in vitamin D. There is also
considerable evidence to indicate that vitamin D deficiency
is related to mortality (Schöttker et al. 2013; Gaksch
et al. 2017; Ordóñez-Mena et al. 2017). A decrease in
vitamin D activity has been linked to premature ageing
in mice (Keisala et al. 2009). In addition, an increase
in the activity of these ageing processes during vitamin
D deficiency may also set the stage for the onset of
many of the age-related disorders such as a decline in
cognition, depression, osteoporosis, hypertension and
cardiovascular disease, diabetes, cancer, muscle weakness,
and Alzheimer’s disease (Zittermann, 2003; Annweiler
et al. 2010; Pittas & Dawson-Hughes, 2010; Meehan &
Penckofer, 2014; Banerjee et al. 2015; Berridge, 2015b,
2016; Costantino et al. 2016; Dawson-Hughes, 2017; Wang
et al. 2017). In the case of cancer, polymorphisms of the
vitamin D receptor (VDR) have been linked to the onset of
prostate cancer (Liu et al. 2017). The fact that the ability of
the skin to make vitamin D declines as ageing progresses is
one reason why cognition tends to decline during ageing
(MacLaughlin & Holick, 1985; Kennel et al. 2010; Grady,
2012). In order to develop this hypothesis that the rate of
ageing is regulated by vitamin D, I will describe the role of
these different ageing processes and how vitamin D carries
out its regulatory activity.

Autophagy and ageing

There is increasing evidence that autophagy plays a key
role in maintaining healthy ageing (Rubinsztein et al.
2011; Madeo et al. 2015; Plaza-Zabala et al. 2017). In
those families that have extended longevity, the process
of autophagy is better maintained (Raz et al. 2017). Auto-
phagy is an essential process in that it maintains healthy
cells by removing damaged proteins and malfunctioning
organelles, especially the mitochondria (Hubbard et al.
2012; Fivenson et al. 2017; Palikaras et al. 2017). As
mitochondria age, there is a decline in their ability to
generate ATP and they begin to generate large amounts
of reactive oxygen species (ROS). Such an increase in
oxidative stress is one of the processes that enhances ageing
(Fig. 1; Terman et al. 2007; Salminen et al. 2012; Ureshino
et al. 2014). Therefore, to reduce ageing it is essential that
these damaged mitochondria are removed by autophagy.
It is essential, therefore, that the process of autophagy is
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maintained and there is evidence that it may decline when
ageing is occurring at a fast rate.

The autophagy process is regulated by changes in the
level of Ca2+ (Høyer-Hansen et al. 2007; Decuypere et al.
2011b; La Rovere et al. 2016; Sun et al. 2016; Luyten et al.
2017) and by increases in the levels of ROS (Navarro-Yepes
et al. 2014). The action of Ca2+ is complicated because it
exerts a dual action on autophagy. For example, an increase
in the level of Ca2+, especially following the activation of
inositol trisphosphate receptors (InsP3Rs), acts to inhibit
autophagy (Criollo et al. 2007). On the other hand, a
reduction in the level of Ca2+ also enhances autophagy. It
has been proposed that the nature of the cellular state may
determine how this dual action of Ca2+ occurs (Decuypere
et al. 2011b).

There is now growing evidence that vitamin D plays
an important role in maintaining autophagy (Fig. 1; Yuk
et al. 2009; Høyer-Hansen et al. 2010; Verway et al. 2010;
Wu & Sun, 2011; Jang et al. 2014; Uberti et al. 2014;
Wang et al. 2016; Chirumbolo et al. 2017; Mushegian,
2017; Tavera-Mendoza et al. 2017; Wei et al. 2017). It is
possible that vitamin D will act to promote autophagy by
regulating the level of Ca2+ through its ability to promote
the expression of Ca2+ pumps and Ca2+ buffers as will
be described in a later section. By maintaining autophagy,
vitamin D will reduce the ageing process by ensuring that
the mitochondria do not generate excessive amounts of
ROS, which have been implicated in ageing as described
below.

Inflammation and ageing

Inflammation has been implicated in the process of
ageing (Cevenini et al. 2010, 2013; Salminen et al. 2012;
López-Otı́n et al. 2013; Petersen & Smith, 2016; Di
Benedetto et al. 2017). Damaged mitochondria may play a
role in initiating this increase in inflammation (Green et al.
2011). These dysfunctional mitochondria are the result of
a decline in autophagy that acts normally to remove such
damaged mitochondria as described above (Salminen et al.
2012).

One of the important actions of vitamin D is to
reduce inflammation (Fig. 1; Garcion et al. 1999; Hewison,
2010; Sundar & Rahman, 2011; Briones & Darwish 2012;
Berk et al. 2013; Alvarez et al. 2014; Lucas et al. 2014;
Wang et al. 2014). One way it does this is to reduce the
expression of inflammatory cytokines (d’Hellencourt et al.
2003; Beilfuss et al. 2012; Grossmann et al. 2012; Wei &
Christakos, 2015), which are such a prominent feature of
how inflammatory responses alter cellular activity. One of
these inflammatory cytokines is tumour necrosis factor-α
(TNF-α), which acts to increase the expression of the
InsP3Rs (Park et al. 2009) thus inducing an increase in
the level of Ca2+, which accelerates ageing as described
below.

Mitochondrial dysfunction and ageing

Mitochondrial dysfunction is one of the main drivers of
ageing (Lin & Beal 2006; Petrosillo et al. 2008; Wang et al.
2013; Yin et al. 2016). As a result of their dysfunction,
the mitochondria produce insufficient ATP but generate
increased amounts of ROS that enhance oxidative stress
(Terman et al. 2006, 2010; Petrosillo et al. 2008; Toman
& Fiskum, 2011; Marzetti et al. 2013; Wang et al. 2013),
which is one of the main drivers of ageing (Fig. 1). It is
likely that this mitochondrial dysfunction is driven by a
deficiency in vitamin D.

One of the main functions of vitamin D is to
maintain the activity of the mitochondrial respiratory
chain (Consiglio et al. 2015). Vitamin D also regulates
the expression of the uncoupling protein (UCP), which
is located on the inner mitochondrial membrane where
it acts to control thermogenesis (Abbas, 2016). During
vitamin D deficiency, mitochondrial respiration declines
due to a reduction in the nuclear mRNA molecules
and proteins that contribute to mitochondrial respiration
(Kim et al. 2014; Scaini et al. 2016). In particular, the
formation of ATP declines because there is a vitamin
D-dependent reduction in the expression of complex I of
the electron transport chain. This decline in the electron
transport chain also results in an increase in the formation
of ROS, which induce oxidative stress, which is a feature
of ageing (Brownlee, 2005; Lowell & Shulman, 2005) as
described in the following section.

Members of the sirtuin family, such as sirtuin (SIRT)
1, also play an important role in maintaining normal
mitochondrial function (Westphal et al. 2007). The
sirtuins, which are NAD+-dependent protein deacetylases,
function as anti-ageing proteins that reduce ageing by
regulating a wide range of protein targets (Guarente,
2007; Law et al. 2009; Donmez & Guarente, 2010;
Grabowska et al. 2017). The sirtuins also play an
important role in reducing brain ageing (Satoh et al.
2017). SIRT1 contributes to mitochondrial biogenesis by
activating PGC-1α. These beneficial effects of SIRT1 on
mitochondrial function are regulated by vitamin D, which
acts by increasing the formation of SIRT1 (An et al. 2010;
Polidoro et al. 2013; Chang & Kim, 2016; Marampon et al.
2016; Manna et al. 2017).

One of the main actions of vitamin D is to maintain
the normal mitochondrial control of cellular bioenergetics
(Calton et al. 2015). The Ca2+ buffering role of
dysfunctional mitochondria is also compromised resulting
in an increase in the intracellular level of Ca2+, which is a
feature of ageing as described later.

Oxidative stress and ageing

Oxidative stress, which is one of the main drivers of ageing
(Finkel & Holbrook, 2000; Stadtman, 2002; Brewer, 2010;
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Paradies et al. 2011; Ureshino et al. 2014; Petersen & Smith,
2016), is caused by the increase in ROS formation by
dysregulated mitochondria as described above. Vitamin
D plays a major role in regulating ROS levels through its
ability to control the expression of cellular antioxidants
as part of its role to maintain phenotypic stability of cell
signalling pathways (Dong et al. 2012; George et al. 2012;
Berridge, 2015a,b). Vitamin D also supports such redox
control by maintaining normal mitochondrial function
(Bouillon & Verstuyf, 2013; Ryan et al. 2016) as described
earlier.

Many of the genes that are controlled by the vitamin
D–Klotho–Nrf2 regulatory network function to maintain
redox homeostasis. For example, vitamin D together
with Klotho and Nrf2 increases cellular antioxidants
to maintain the normal reducing environment within
the cell thereby preventing oxidative stress by removing
ROS. For example, the expression of γ-glutamyl trans-
peptidase, glutamate cysteine ligase and glutathione redu-
ctase, which contribute to the synthesis of the
major redox buffer glutathione (GSH), is regulated
by vitamin D. Vitamin D also increases the activity
of glucose-6-phosphate dehydrogenase to increase the
formation of GSH. It down-regulates the nitrogen oxide
(NOX) that generates ROS while upregulating the super-
oxide dismutase that rapidly converts O2

−• to H2O2

(Berridge, 2016). Vitamin D also up-regulates expression
of the glutathione peroxidase that drives the conversion of
H2O2 to water.

Ca2+ signalling and ageing

An alteration in the Ca2+ signalling pathway has also be
linked to an acceleration in the process of ageing (Fig. 1;
Mattson, 2007; Puzianowska-Kuznicka & Kuznicki 2009;
Ureshino et al. 2010; Decuypere et al. 2011a; Gant et al.
2014; Berridge, 2016; Veldurthy et al. 2016; Martin &
Bernard, 2017). During ageing, there is an alteration in
Ca2+ signalling in atrial myocytes (Herraiz-Martı́nez et al.
2015) and neurons (Buchholz et al. 2007; Murchison &
Griffith, 2007). The relationship between Ca2+ signalling
and ageing is particularly evident in the ageing brain
(Thibault et al. 2001; Foster & Kumar, 2002; Gant et al.
2006; Foster, 2007; Thibault et al. 2007; Kumar et al.
2009; Gant et al. 2014). An increase in the release of
Ca2+ from internal stores by the InsP3Rs and ryanodine
receptors (RYRs) contributes to this increase in neural
Ca2+ levels during ageing (Banerjee & Hasan, 2005;
Puzianowska-Kuznicka & Kuznicki, 2009; Santulli &
Marks 2015). The increase in Ca2+ release from the RYRs is
caused by a decline in the expression of the FK506-binding
proteins 1a and 1b (FKBP1a/1b), which act normally to
reduce the release of Ca2+ by the RYRs (Gant et al. 2014).
Inserting an adeno-associated viral vector bearing a trans-
gene encoding FKBP1b was able to reduce the effects of the

elevated levels of Ca2+ that function to impair cognitive
functions that occur during ageing (Gant et al. 2015).

When considering the role of Ca2+ in ageing, it is
important to include magnesium, which is closely linked
to both vitamin D and Ca2+. One the functions of
magnesium is to enhance the synthesis of vitamin D (Rude
et al. 1985; Risco & Traba, 1992; Deng et al. 2013). There
are now indications that low levels of magnesium are
linked to a number of diseases that are also associated
with vitamin D deficiency. For example, a deficieny in
magnesium has been linked to ageing. Lower magnesium
levels have been found in individuals with hypertension
and metabolic syndrome (Rotter et al. 2015). Low blood
pressure and an increased risk of stroke have also been
observed in individual with low magnesium levels (Bain
et al. 2015). Some of the actions of magnesium are
mediated through a reduction in Ca2+ signalling processes.
In the brain, extracacellular magnesium can reduce Ca2+
entry through voltage-gated Ca2+ channels and NMDA
receptors (Wilmott & Thompson 2013). An increase in
magnesium in the brain reverses the decline in cognition
in Alzheimer’s disease (Li et al. 2014). It is clear from all
this evidence that magnesium plays an important role in
regulating the activity of both Ca2+ and vitamin D.

During ageing, there is a decline in the level of the
Ca2+ buffer calbindin-D28K in the cholinergic neurons in
the brain (Riascos et al. 2011). In motoneurons, vitamin
D acts to increase the expression of calbindin-D28 and
parvalbumin (Alexianu et al. 1998). High levels of these
buffers contributes to the low levels of Ca2+. A decline in
these buffers, caused by a decline in the level of vitamin
D that occurs during ageing, will result in an elevation of
the level of Ca2+, which is a feature of brain ageing. In
the ageing brain, there also is a decrease in the expression
of Bcl-2 (Ureshino et al. 2010), which may contribute
to the increase in Ca2+ release by the InsP3Rs. Bcl-2
interacts with the InsP3Rs to reduce the release of Ca2+
(Distelhorst & Bootman 2011). One of the consequences
of this increase in the levels of Ca2+ during brain ageing
is a decline in cognition (Thibault et al. 2001, 2007;
Foster 2007; Toescu & Verkhratsky, 2007; Toepper, 2017).
This decline in cognition is particularly evident in ageing
patients (Seamans et al. 2010). In addition to this decline
in cognition, there also is evidence of a decline in sleep
in older adults, which may contribute to the decline in
cognition (Mander et al. 2017).

Vitamin D has been shown to alleviate this enhanced
Ca2+ elevation in the ageing brain. By reducing the levels
of Ca2+, vitamin D restores normal cognitive function
(Landfield & Cadwallader-Neal, 1998; Brewer et al. 2006;
Przybelski & Binkley, 2007; Perna et al. 2014; Schlögl
& Holick, 2014; Toffanello et al. 2014; Banerjee et al.
2015). Strong support for such a notion has come from
the study of the decline in cognition in ageing rats that
is driven by a marked increase in the amplitude of the
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slow after-hyperpolarization (sAHP) that depends on a
build-up of Ca2+ that activates the SK potassium channel
(Landfield, 1987). This Ca2+ signal, which depends on the
opening of L-type voltage-dependent Ca2+ channels that
provides trigger Ca2+ to activate RYRs, inhibits memory by
curtailing the spiking activity necessary for LTP, whereas
the increase in Ca2+ stimulates calcineurin to induce
the long-term depolarization that erases memories. The
development of this sAHP during ageing depends on
dysregulation of both Ca2+ and ROS signalling that can
be directly attributed to vitamin D deficiency.

One of the consequences of the elevation of Ca2+
and ROS that occurs during vitamin D deficiency is
an increase in the incidence of age-related diseases. For
example, the onset of Alzheimer’s disease occurs in those
individuals who are deficient in vitamin D (Banerjee
et al. 2015) and thus have abnormally elevated levels of
both Ca2+ and ROS, which may induce the formation
of the pathological amyloid beta (Aβ) oligomers that
then initiate the onset of Alzheimer’s disease (Berridge,
2016). Such a possibility is based on the fact that elevated
levels of Ca2+ act to stimulate the enzymes that form Aβ

(Querfurth & Selkoe, 1994; Green & LaFerla, 2008; Itkin
et al. 2011). Such an increase in Ca2+ that occurs during
vitamin D deficiency may also be associated with the onset
of other neurodegenerative diseases such as Parkinson’s
disease, Huntington’s disease and amyotrophic lateral
sclerosis.

Vitamin D acts to increase the expression of both
Klotho and Nrf2, which also act to reduce the ageing
process. Vitamin D working together with Nrf2 and Klotho
plays an essential role in maintaining the phenotypic
stability of many cell signalling pathways and particularly
the Ca2+ and redox signalling systems (Berridge,
2015a, b). This vitamin D–Klotho–Nrf2 regulatory system
can prevent the dysregulation of Ca2+ and ROS signalling
through multiple mechanisms. Vitamin D suppress the
expression of the L-type Ca2+ channel (Brewer et al.
2001, 2006) that initiates the Ca2+ signal that induces
the sAHP and it also maintains the expression of plasma
membrane Ca2+-ATPase (PMCA) and the Na+/Ca2+
exchanger (NCX1), which extrude Ca2+ from the cell.
In dendritic cells, vitamin D reduces the level of Ca2+ by
increasing the expression of the NCX1 that extrudes Ca2+
from the cell (Shumilina et al. 2010). Klotho, which is an
anti-ageing protein (Kim et al. 2015), acts to stimulate
the Na+/K+-ATPase responsible for maintaining the Na+
gradient necessary for Ca2+ extrusion by NCX1. Finally,
premature ageing occurs when Nrf2 is repressed (Kubben
et al. 2016). Nrf2 increases the expression of many anti-
oxidants that ensure that ROS levels are kept low (Lewis
et al. 2010; Niture et al. 2010; Sykiotis et al. 2011;
Nakai et al. 2014), which will prevent the sensitization
of the RYRs that are triggering the sAHP and memory
erasure.

The central role of vitamin D deficiency in this neuro-
nal dysregulation and cognitive decline can be reversed
by treating neurons with vitamin D, which dramatically
reduces the sAHP (Brewer et al. 2006). When tested on
ageing rats, vitamin D was found to enhance hippocampal
synaptic function and, more significantly, it could prevent
the decline in cognition (Landfield & Cadwallader-Neal,
1998; Latimer et al. 2014).

Epigenetics and ageing

Epigenetic changes in the genome play an important role
in the ageing process (Gonzalo, 2010; Gravina & Vijg, 2010;
Ford et al. 2011; Lillycrop et al. 2014; Benayoun et al. 2015;
Aunan et al. 2016; Pal & Tyler, 2016; Sen et al. 2016). The
main epigenetic change that influences ageing is DNA and
histone methylation, which has a marked influence on
expression of many of the genes that are responsible for
healthy ageing. A good example of this is the fact that such
epigenetic changes have been linked to oxidative stress
(Hedman et al. 2016). As described earlier, such oxidative
stress is enhanced by a decline in the expression of cellular
antioxidants. Such a view is supported by the fact that the
most important signalling pathways that are maintained
by vitamin D are the Ca2+ and redox signalling pathways
(Berridge, 2016).

One of the major regulators of antioxidant expression
is vitamin D and there is increasing evidence that
vitamin D also controls the epigenetic landscape of its
multiple gene promoters (Hossein-nezhad & Holick, 2012;
Hossein-nezhad & Holick, 2013; Fetahu et al. 2014;
Xue et al. 2016). Both the acetylation and methylation
states of its promotor regions are maintained by vitamin
D. With regard to acetylation, the vitamin D receptor
(VDR) complex recruits histone acetylases such as
p300–CREB-binding protein (CBP) and steroid receptor
coactivator 1 (SRC-1). Perhaps its most significant action
is to increase the expression of a number of DNA
demethylases. Control of demethylation is critical because
many of the genes regulated by vitamin D are silenced by
methylation of the CpG islands located in their promotor
regions. Such hypermethylation can also account for a
decline in the expression of Klotho that occurs during
ageing (King et al. 2011). Such age-dependent hyper-
methylation is also evident in many age-related diseases
(cancer, cardiovascular and neurodegenerative diseases;
van Otterdijk et al. 2013). For example, hypermethylation
of promotors in GABAergic neurons may contribute to the
phenotypic remodelling responsible for schizophrenia and
bipolar disorder (Guidotti et al. 2011). Since many of these
diseases have also been linked to vitamin D deficiency, it
is not surprising to find that vitamin D can modulate the
epigenetic landscape. Vitamin D controls the expression
of a number of key DNA demethylases such as Jumonji
C domain-containing demethylase (JMJD) 1A, JMJD3,
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lysine-specific demethylase (LSD) 1 and LSD2 (Pereira
et al. 2012), which contributes to its ability to maintain
phenotypic stability.

DNA disorders and ageing

Two DNA disorders contribute to the ageing process:
telomere shortening and DNA alterations caused by the
defective repair of DNA double-strand breaks (DSB);
both cause genomic instability (Ding & Shen, 2008;
Gonzalez-Suarez et al. 2011; López-Otı́n et al. 2013; Chow
& Herrup, 2015; Aunan et al. 2016). It is of interest that
both these defects can be reduced by vitamin D. Telomeres,
which are located at the ends of chromosomes, play an
important role in preventing the ends of chromosomes
from fusing with neighbouring chromosomes (Campisi
et al. 2001; Oeseburg et al. 2010; Prasad et al. 2017). During
ageing, there is a decline in the length of these telomeres
and this causes a decline in cell proliferation resulting in
cell senescence, which characterizes the ageing processes
(Prasad et al. 2017). There is increasing evidence that
vitamin D can act to reduce the rate of telomere shortening
(Hoffecker et al. 2013; Liu et al. 2013; Pusceddu et al. 2015;
Beilfuss et al. 2017; Mazidi et al. 2017). SIRT6 can also
play an important role in stabilizing both the genome and
telomeres (Tennen & Chua, 2011).

The defective repair of DNA double-strand breaks
(DSBs) is another DNA disorder that contributes to
ageing. A deficiency of p53-binding protein 1 (53BP1),
which is a key factor in DNA DSBs, is the cause of the
defective DSB. It has been established that the cysteine
protease cathepsin L (CTSL) is responsible for degrading
53BP1 (Gonzalez-Suarez et al. 2011; Grotsky et al. 2013).
Vitamin D acts to prevent this DNA disorder caused by
DSBs by inhibiting CTSL, which leads to the stabilizatioin
of 53BP1 (Gonzalez-Suarez et al. 2011; Grotsky et al. 2013).

Conclusion

There is increasing evidence that ageing can proceed
at variable rates. In this review, I have developed the
hypothesis that vitamin D may play a major role in
regulating the rate of ageing. The basis of this hypothesis
is that a number of the processes that drive ageing (e.g.
autophagy, mitochondrial dysfunction, inflammation,
oxidative stress, epigenetics, DNA disorders, and
alterations in Ca2+ and ROS signalling) are regulated
by vitamin D. Normal levels of vitamin D are capable
of maintaining these processes at their normal low rates
and this slows down the ageing process and also helps
to prevent the onset of a number of age-related diseases
(e.g. Alzheimer’s disease, Parkinson’s disease, multiple
sclerosis, hypertension and cardiovascular disease).

When vitamin D is deficient, there is an increase
in the activity of these ageing processes that not only

accelerates the rate of ageing, but it also creates the
conditions that initiate the onset of the age-related diseases
such as Alzheimer’s disease. Such an increase in Ca2+
that occurs during vitamin D deficiency has also been
associated with the onset of other neurodegenerative
diseases such as Parkinson’s disease, Huntington’s disease
and amyotrophic lateral sclerosis.
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Fetahu IS, Höbaus J & Kállay E (2014). Vitamin D and the
epigenome. Front Physiol 5, 164.

Finkel T & Holbrook NJ (2000). Oxidants, oxidative stress and
the biology of ageing. Nature 408, 239–247.

Fivenson EM, Lautrup S, Sun N, Scheibye-Knudsen M,
Stevnsner T, Nilsen H, Bohr VA & Fang EF (2017).
Mitophagy in neurodegeneration and aging. Neurochem Int
109, 202–209.

Ford D, Ions LJ, Alatawi F & Wakeling LA (2011). The potential
role of epigenetic responses to diet in ageing. Proc Nutr Soc
70, 374–384.

Forster RE, Jurutka PW, Hsieh J-C, Haussler CA, Lowmiller
CL, Kaneko I, Haussler MR, Kerr Whitfield G (2011).
Vitamin D receptor controls expression of the anti-aging
Klotho gene in mouse and human renal cells. Biochem
Biophys Res Commun 414, 557–562.

C© 2017 The Authors. The Journal of Physiology C© 2017 The Physiological Society



6832 Berridge J Physiol 595.22

Foster TC (2007). Calcium homeostasis and modulation of
synaptic plasticity in the aged brain. Aging Cell 6,
319–325.

Foster TC & Kumar A (2002). Calcium dysregulation in the
aging brain. Neuroscientist 8, 297–301.

Gaksch M, Jorde R, Grimnes G, Joakimsen R, Schirmer H,
Wilsgaard T, Mathiesen EB, Njølstad I, Løchen ML, März W,
Kleber ME, Tomaschitz A, Grübler M, Eiriksdottir G,
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